Prékopa–Leindler inequality

Consider the following statements:

  1. The shape with the largest volume enclosed by a given surface area is the n-dimensional sphere.
  2. A marginal or sum of log-concave distributions is log-concave.
  3. Any Lipschitz function of a standard n-dimensional Gaussian distribution concentrates around its mean.

What do these all have in common? Despite being fairly non-trivial and deep results, they all can be proved in less than half of a page using the Prékopa–Leindler inequality.

(I won’t show this here, or give formal versions of the statements above, but time permitting I will do so in a later blog post.)

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: